Intelligent Vehicle Road Type Recognition Based on Mask
编号:1437 访问权限:仅限参会人 更新:2021-12-03 10:50:20 浏览:90次 张贴报告

报告开始:2021年12月17日 11:08(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Traffic environment perception is the foundation of autonomous driving, and road type recognition can provide support information for decision making of intelligent vehicle. In this paper, we adopt the strategy of integrating the Mask R-CNN model with two different convolutional neural networks (ResNet-101 and ResNet-50) respectively to perform the road type recognition and establish road type dataset containing pictures of expressway and urban main road based on the TT100K dataset. The experiment results indicate that Mask R-CNN with ResNet-50 can achieve the mAP of 96.30%, which is 17.60% higher than that of ResNet-101 and can realize the recognition of road type effectively. And the comparison between ResNet-50 and ResNet-101 demonstrates that for different recognition tasks with different amount of data, suitable depth network needs to be chosen carefully in order to achieve satisfying results. Key words: Mask R-CNN, road type, object recognition;
关键词
CICTP
报告人
Zhijun Chen
Wuhan University of Technology

稿件作者
Zhijun Chen Wuhan University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询