Vehicle Detection via Monocular Depth Estimation
编号:1407 访问权限:仅限参会人 更新:2021-12-03 10:49:42 浏览:94次 张贴报告

报告开始:2021年12月17日 10:43(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Vehicle detection is critical components of driver assistance system and self-driving system, and considerable different frameworks have been investigated such as radar, laser and camera-based. Among them, camera-based vehicle detection has an obvious advantage over other systems in that it needs lower cost. However, existing camera-based methods are not robust enough under complex driving scenes. In this work, an end-to-end deep CNN framework is proposed to detect vehicles. Specifically, a monocular depth estimation method is designed to transform the RGB appearance information into depth modality information. Then the vehicle detection module takes the RGB and depth image as inputs to improve the detection performance. The whole network can be trained in an end-to-end manner. The proposed framework is evaluated on the public vehicle detection benchmark KITTI to show the effectiveness of the proposed framework.
关键词
CICTP
报告人
Chao Shen
Chang 'an University

稿件作者
Chao Shen Chang 'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询