Reinforcement Learning-based Signal Control Strategies to Improve Travel Efficiency at Urban Intersection
编号:1401 访问权限:仅限参会人 更新:2021-12-03 10:49:34 浏览:95次 张贴报告

报告开始:2021年12月17日 10:40(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Aiming at the problem of improving the efficiency of urban intersection control, two signal control strategies based on reinforcement learning (Q-learning (QL) and deep Q-learning network (DQN)), respectively, re proposed. Overcoming the rough and passive defects of the traditional intersection timing control, the QL and DQN algorithm with intelligent real-time control is adopted. An algorithm framework with radar and video detector data as input and optimal intersection control strategy as output is constructed. Based on the traffic simulation platform, a typical urban intersection is simulated and the control effect is tested. The results show that the proposed two intelligent control strategies can actively respond to different traffic states, converge in short training time and find the optimal control strategy. QL-based control strategy and DQN-based control strategy can effectively reduce the travel time by more than 20% and the stop delay by more than 30%. And DQN-based control strategy is more effective than the QL-based control strategy.
关键词
CICTP
报告人
Shunchao Wang
Anhui KELI information industry Co. Ltd.

稿件作者
Shunchao Wang Anhui KELI information industry Co. Ltd.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询