High Resolution Speed Estimation for Large-scale Freeway Based on Data Fusion Technology
编号:1333 访问权限:仅限参会人 更新:2021-12-03 10:48:01 浏览:96次 张贴报告

报告开始:2021年12月17日 10:16(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Key: Data Fusion; Speed estimation; Neural Network; High resolution; Microscopic Simulation Obtaining high resolution traffic states of large-scale freeway is always a significant topic for both transportation engineers and researchers. This paper presents a machine learning based high resolution speed estimation method for large-scale freeway using two data sources. Two low resolution heterogeneous traffic data are collected from microscopic simulations with different error distributions. A neural network based model is implemented fusing the two data sources and improving both time and space resolution of traffic estimations. The validation results and the sensitivity analysis indicate that the proposed method is feasible and suitable for large-scale freeway speed estimation. The performance of the model is acceptable, and the model could indeed improve both time and space resolutions of the estimations. Author List, Yanjie Gui, 502250970@qq.com, School of Transportation, Southeast University, Fan Ding, dyinfan1129@gmail.com, School of Transportation, Southeast University Hanxuan Dong, 493296757@qq.com, School of Transportation, Southeast University Jiankun Peng, pengjk87@gmail.com, School of Transportation, Southeast University Huachun Tan, tanhc@seu.edu.cn, School of Transportation, Southeast University
关键词
CICTP
报告人
Huachun Tan
Southeast University

稿件作者
Huachun Tan Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询