Analysis of Factors Affecting Injury Severity in Motorcycle Involved Crashes
编号:1274 访问权限:仅限参会人 更新:2021-12-03 10:40:27 浏览:88次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Motorcycles are more prone to serious crashes than other motor vehicles. To analyze factors affecting crash severity in single motorcycle crashes, five classification algorithms are tested. Additionally, to handle the data imbalance embedded in the crash data from the National Collision Database of Canada is collected. this study proposes seven data preprocessing approaches. To compare the classification performance of difference algorithms, The G-mean (geometric mean) is used. Results indicate that XGBoost and RandomOverSampler is the best combination method, with a G-mean of 0.593, 339% higher than the original model (0.135). The SHAP summary plot reveals that the following features play an important role in classifying injury severity in motorcycle crashes: road safety used, road alignment, traffic control, roadway configuration, road surface, person age, person sex, collision configuration and weather condition. These results are useful to guide government agencies to develop policies or standards to alleviate the severity in motorcycle crashes.
关键词
CICTP
报告人
Shaofeng Sun
Chang'an University

稿件作者
Shaofeng Sun Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询