Predicting Crash Injury Severity for the Highways involving Traffic Hazards and involving no Traffic Hazards
编号:1273 访问权限:仅限参会人 更新:2021-12-03 10:40:26 浏览:93次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
There has complex relationship between traffic crashes and many influencing factors. This study develops a random forest model for predicting highway crash severity using crash database collected from 11 highways. We extract important factors affecting highway crash severity and classify the crash severity into three types: minor injury, serious injury and fatality. SPSS MODELER software is used to model a total of 5211 collisions occurring from the January of 2017 to the April of 2019. In addition, sensitivity analysis of significant factors is also implemented. The results in this study can provide technical services for relevant management departments to make scientific and reasonable accident response decisions. For future investigation, real-time highway crash severity prediction models will be developed to reduce the severity of the accident.
关键词
CICTP
报告人
Jinxian Weng
Shanghai Maritime University

稿件作者
Jinxian Weng Shanghai Maritime University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询