A Microscopic Spatial-Temporal Forecast Framework for Inflow and Outflow Gap of Free-Floating Bike Sharing System
编号:1065 访问权限:仅限参会人 更新:2021-12-03 10:35:26 浏览:97次 张贴报告

报告开始:2021年12月17日 09:23(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T6] Track 6 Future Transportation and Modern Logistics

暂无文件

摘要
Free-Floating Bike-Sharing System (FFBSS) has been popularized rapidly as a newly arisen short-distance transportation mode. However, over-delivery of bikes also brings many problems. Evaluating the usage of bikes is the basis for delivery and relocating. Since users play a significant role in the movement of the bike, it is necessary to consider the unlocking and locking events as the inflow and outflow of the area when evaluating the usage. Based on the consideration of both kinds of user behavior, the inflow and outflow gap of FFBSS is gridded by using different spatial-temporal parameters. The performances of Linear Regression (LR), Support Vector Regression (SVR), Random Forest (RF) and Gradient Boost Machine (GBM) are compared. The results show that GBM can get the best results in most of the time.
关键词
CICTP
报告人
Yongfeng Ma
Southeast University

稿件作者
Yongfeng Ma Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询