A Defects Detection System for Substation Based on YOLOX
编号:590 访问权限:仅限参会人 更新:2022-05-22 18:04:50 浏览:326次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
To improve the intelligent supervision level of substation, a defects images dataset facing to substation scenario was built by collecting and labeling a huge number of images about substation equipment defects. Then a transfer learning model based on the YOLOX model was trained by adjusting the model training parameters. Finally, a model with 87.4 % mean average precision and affordable speed (about 0.07 second per image) was constructed. And the experiments results proved that this model can detect the preset defects of substation equipment accurately in acceptable speed according to the visible image obtained from monitoring equipment, which means it has satisfying application potential in future.
关键词
暂无
报告人
JunjieYe
Southeast University

Studying for master's degree, and my main research field is the application of artificial intelligence technology in power grid

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询