Design of DC Arc Fault Online Detectors in Photovoltaic Systems Based on Neural Network
编号:364 访问权限:仅限参会人 更新:2022-05-20 15:32:59 浏览:183次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
DC arc faults in photovoltaic (PV) systems often create serious hazards, so that they need to be detected quickly and accurately. Compared with the traditional time and frequency domain arc fault detection methods, the method combined with machine learning achieves higher detection accuracy under different working conditions. In view of the above-mentioned background, this paper designs an arc fault online detector that can be integrated into PV systems, based on neural network (NN) algorithm. First, an arc fault detection experiment platform is built. By analyzing the measured arc data, the characteristic frequency band of the arc signal is selected. On this basis, a filter circuit is designed. After the filtered signal processed by digital signal processing (DSP), it is transmitted through the serial port to the host computer to complete the data acquisition. Then, the method of selecting, calculating and preprocessing the features of the signal is proposed. Using the processed features, the NN classifier is trained and optimized in the host computer to achieve a classification accuracy of over 99.5%. Finally, the trained parameters are used in the detection code of DSP, and the arc detection can be completed within 4ms, realizing the function of real-time arc fault detection.
关键词
photovoltaic (PV) system;dc arc;online fault detection;feature extraction;neural network (NN)
报告人
QinshuLu
华中科技大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询