Comparison and improvement of key feature selection methods for intelligent assessment of transient power angle stability
编号:112 访问权限:仅限参会人 更新:2022-05-16 16:07:31 浏览:166次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Key feature selection is of great significance for intelligent assessment of transient power angle stability of power system. This paper proposes a key feature selection method for improved Relief. Through analyzing and comparing the applicability of correlation coefficient, mutual information and Relief, three representative key feature selection methods, in the intelligent assessment of transient angle stability of power system, the applicability of Relief is better. The Relief index reflects the strength of the feature to classify transient power angle stability and instability. By eliminating redundancy and increasing the weight of unstable samples, the accuracy of index calculation and the ability to adapt to sample imbalance are improved. Based on improved Relief, feature is selected by iterative optimization, which can automatically screen out the optimal key feature set. The effectiveness of the method is verified by an example of power grid.
 
关键词
feature selection;transient power angle stability;improved Relief
报告人
ZhangYin
State Grid Electric Power Research Institute

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询