SOC estimation of lithium battery with weighted multi-innovation adaptive Kalman filter algorithm
编号:111 访问权限:仅限参会人 更新:2022-05-22 23:33:11 浏览:195次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
For the second-order equivalent circuit model of lithium batteries, in order to improve the accuracy of the extended Kalman filter (EKF) algorithm, a weighted multi-innovation adaptive Kalman filter (MI-AEKF) method is investigated for battery SOC estimation. Improve information utilization by expanding the single innovation from current time to multiple innovations containing current and historical time information Considering the influence of present and past data, a weighted multiple information theory is studied. Experiments are carried out under different working conditions. Considering noise variation, a recursive noise estimation based extended Kalman filter algorithm is adopted to realize adaptive correction of noise, and the results show that the method effectively reduces the divergence of the filtering and enhances the estimation accuracy and stability of the algorithm.
关键词
lithium battery; state of charge(SOC); multi-information; extended Kalman filte
报告人
XuJieyu
Student Qingdao University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月27日

    2022

    05月29日

    2022

  • 02月28日 2022

    初稿截稿日期

  • 05月29日 2022

    注册截止日期

  • 06月22日 2022

    报告提交截止日期

主办单位
IEEE Beijing Section
China Electrotechnical Society
Southeast University
协办单位
IEEE Industry Applications Society
IEEE Nanjing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询