Screening of natural oxygen carriers for chemical looping combustion based on machine learning method
编号:134 访问权限:仅限参会人 更新:2023-03-23 19:32:10 浏览:350次 张贴报告

报告开始:2021年08月09日 15:30(Asia/Shanghai)

报告时间:15min

所在会场:[P] 大会报告 [2] 分会场一:反应器设计及系统优化

暂无文件

摘要
The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of high cost and long material design cycles. Here, a machine learning model has been established and successfully predicted the effect of composition, porosity, specific surface area and other physicochemical properties on the redox performance. A database consisting of 190 samples was used to train the BP-ANN algorithm and the SVM algorithm. The SVM algorithm triumphs over the BP-ANN algorithm in that the best model by the SVM algorithm makes predictions with a high coefficient of determination (R2 = 0.961) and a low root means square error (RMSE = 0.014). According to the obtained model, the copper ore was estimated to exhibit high reaction performance in terms of 68% CH4 conversion and 96% CO conversion at 950 oC. We anticipate the machine learning method can be extended to predict the performance of oxygen carriers for other chemical looping applications.
 
关键词
Machine learning, BP-ANN and SVM Algorithm, Oxygen carrier screening, Chemical looping combustion
报告人
宋毅文
研究生 东南大学

稿件作者
宋毅文 东南大学
曾德望 东南大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    04月06日

    2023

    04月08日

    2023

  • 04月04日 2023

    报告提交截止日期

  • 04月15日 2023

    注册截止日期

  • 04月30日 2023

    初稿截稿日期

主办单位
昆明理工大学
承办单位
昆明理工大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询