898 / 2019-04-30 15:14:59
Fault Detection Method for Wind Turbine Gearbox Based on Sparse Bayesian Probability Estimation
Fault detection, Probability interval, SCADA data, Spare Bayesian Learning, Wind turbine.
全文录用
In this paper, a SCADA data-based fault detection method for gearbox oil filtration pressure is proposed, and the core of the method is Spare Bayesian Learning (SBL) algorithm. According to training the historical normal operation data from SCADA system, the gearbox oil filtration pressure estimation model based on SBL can be constructed. Based on the model, the probability distribution interval of the gearbox oil filtration pressure can be estimated. Then, the abnormal state of gearbox oil filtration pressure can be judged by observing whether the actual data within the probability distribution interval. In addition, statistical hypothesis testing method is used to verify the reliability of the anomaly detection results. Through the method, the oil filtration pressure abnormal detection problem can be transformed into a parameter estimation problem with low computational complexity. Case studies are conducted on two known fault WTs, and the results demonstrate the effectiveness of the method.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询