882 / 2019-04-30 12:29:46
Power System Transient Frequency Prediction Model Based on Support Vector Machine Incremental Learning
frequency situation prediction,support vector machine,incremental learning
全文录用
In order to effectively manage the new sample data continuously generated in power system operation, it is necessary to classify and learn the new data in time. If we re-learn all the data, it will take a lot of time, and may even cause the learning speed lagging behind the data update speed. a power grid transient frequency prediction mode is proposed based on SVM incremental learning. A fast SVM incremental learning method is adopted in this paper.It constructs a recursive solution and adds new data to the solution.Karush-Kuhn-Tucker conditions are maintained for all the previous used training data. The effectiveness of the transient prediction model updating algorithm is verified in the IEEE39 bus test system. The algorithm model updating time-consuming and prediction accuracy advantages are obvious, and it can adapt to the growth of power system transient stability sample set.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询