637 / 2019-04-12 15:32:11
A Transient Stability Assessment Method Using LSTM Network with Attention Mechanism
transient stability assessment; time series variable; LSTM; attention mechanism
终稿
Xu Wang / State Grid Jiangsu Electric Power Co., LTD. Research Institute
Qian Zhou / State Grid Jiangsu Electric Power Co., LTD. Research Institute
Cheng Huang / State Grid Jiangsu Electric Power Co., LTD. Research Institute
Shiwu Liao / State Grid Jiangsu Electric Power Co., LTD. Research Institute
Yefeng Jiang / State Grid Jiangsu Electric Power Dispatching and Control Center
Yaming Ge / State Grid Jiangsu Electric Power Dispatching and Control Center
the operation environment of modern power system is complicated, which puts high requirements for transient stability assessment. Recently, the machine learning method based on data analysis has been widely studied. However, most of the research is insufficient in processing the information of features and underutilized in the data mining capacity of learning machine. In this paper, the time series variables (the trajectory of bus voltage amplitude, power angle, rotor speed, electromagnetic power, and the unbalance of electromagnetic power and mechanical power) during post-fault are used as the inputs of the learning machine. The LSTM (Long Short-Term Memory) deep learning network with attention mechanism is applied to process the time series variables, to make full use of the prior information in the big data and overcome the “dimension disaster” problem of high dimensional data. The simulation results of 10 machine 39 bus system show that the proposed transient stability assessment method can process the time series variables effectively and improve the prediction accuracy.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询