635 / 2019-04-11 16:26:23
Fault Cause Identification Method Based on Multi-Source Information Fusion for UHVDC Transmission Lines
fault cause identification; multi-source information; UHVDC; BP neural network
终稿
Rongqi Fan / State Grid Shandong Electric Power Company
Jing Li / State Grid Shandong Electric Power Company
Ning Ge / State Grid Shandong Electric Power Company
Kuan Li / State Grid Shandong Electric Power Research Institute
Zhiyuan Wang / Key Laboratory of Power System Intelligent Dispatch and Control (Shandong University)
Huanhuan Yin / Key Laboratory of Power System Intelligent Dispatch and Control (Shandong University) Ministry of Education
This paper proposes a fault cause identification method based on multi-source information for UHVDC transmission lines. The multi-source fault information used in this paper includes voltage, current,weather, season, time period, terrain and historical fault information. Firstly, the method analyzes multi-source fault information to extract fault features. Then, the BP neural network is used to fuse the multi-source fault feature. The output of the BP neural network is the probability of failure causes. This method selects the fault type with the highest probability. The effectiveness and feasibility of the method in identifying different types of fault causes are demonstrated by case tests.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询